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Abstract

In this study embodied embedded agents are evolved in order to gain a better understanding of the
distribution of cognitive functions in the brain. We found that the evolution of the two hemispheres is
influenced by the structure of the body plan. Furthermore, it is seen that individuals with an asymmetri-
cal body plan, which gain an asymmetrical control structure, perform better in the end than individuals
with a symmetrical body. This is in line with the idea that an asymmetrical nervous system yields
computational benefits since it contains less redundant processes. Finally, we found that although the
symmetrical individuals show a lower performance, their development is faster. We argue that this faster
development is the result of reduced complexity of the control structure in comparison to asymmetrical
individuals.

1 Introduction

Our brain performs many different cognitive func-
tions which form behavior through interaction with
the body and the environment [4, 5, 15]. These cog-
nitive functions differ, among other things, in neural
location and space (i.e. the location of the function
in the brain and the number of neurons involved).

For many years, these issues have had a lot of at-
tention commonly referred to as cerebral lateraliza-
tion [11, 17]. In those studies, there is a large focus
on the location of brain functions. In contrast, little
research is conducted on the origin of lateralized func-
tions. Hence, more research into the development of
a lateralized nervous system might lead to novel ideas
an insights.

In this study we will focus on two questions that
capture typical aspects of our lateralized nervous sys-
tem:

1. Why does our brain consist of two hemispheres?

2. Why are some of the functions of the brain sym-
metrically organized whereas others are asym-

metrically organized?

Regarding the first question, it is most likely that
those parts of the nervous system that have to deal
with sensory and motor interactions tend to be or-
ganized in a symmetrical way, since our body plan
is also symmetrically organized [6]. This could have
resulted in the development of two hemispheres, each
one taking care of one side of the body.

In contrast, others have proposed that the devel-
opment of the two hemispheres is related to the pos-
sibility of possessing duplicate functions ( [7] for an
overview). If the brain is damaged, the functions that
are impaired can be taken over by the corresponding
functions in the other hemisphere. This hypothesis is
unlikely since the brain needs recovery time to adjust
to its new situation. During this period the impaired
animal has very little survival chances [12]. The
unlikeliness of this hypothesis further directs our ex-
pectations towards a morphological influence.

Regarding the second question, it is thought that
symmetrically organized nervous systems contain re-
dundant processes since the same functions are found

1



in both hemispheres. Therefore, there is less neural
space for additional functions which could increase
performance [14]. So, for the second question, it
is expected that asymmetrical individuals (i.e., indi-
viduals with an asymmetrical neural controller) will
perform better than symmetrical individuals, since
lateralization yields computational advantages [21].
Recent biological support for this hypothesis comes
from [16] who have shown that fruit flies with an
asymmetrical nervous system have a superior form of
long-term memory compared to fruit flies possessing
a symmetrical nervous system. Furthermore, later-
alization helps to overcome incompatible responses
[1, 20]. By biasing one hemisphere over the other an
adequate course of action is guaranteed.

Note that these two hypotheses contradict in the
following way: on the one hand, we expect to find
symmetrical control structures as a result of a sym-
metrical body plan; on the other hand, it is stated
that asymmetry yields benefits in comparison to sym-
metry. In all sorts of vertebrates both symmetrically
and asymmetrically organized functions have been
found [17]. This indicates that symmetry and asym-
metry both have intrinsic evolutionary advantages.
One such an advantage for symmetry may be based
on the principle that symmetry is simply less com-
plex to develop since less information needs to be
integrated.

In our experiment we test these hypotheses by
modelling the interactions between brain, body, and
environment. Hereby we use artificial evolution of
agents with different morphological structures (sym-
metrical and asymmetrical). From the hypotheses
stated above we expect that

1. individuals with a symmetrical body plan will
evolve a control structure in which there is more
clustering into two hemispheres in comparison
to individuals with an asymmetrical body plan,

2. individuals with an asymmetrical body plan
will develop a more asymmetrical control struc-
ture, which in turn results in a better perfor-
mance, and

3. individuals with a symmetrical body plan will
develop a more symmetrical control structure
which we expect to evolve faster.

In the next sections it is explained in detail how we
tested our hypotheses (Experimental Setup), what we
found (Results) and what the implications of our find-
ings are (Discussion).

2 Experimental setup

As stated in the introduction, two different robots are
needed: one robot with a symmetrical body plan and
one robot with an asymmetrical body plan. In addi-
tion, an environment is needed in which the robots
can act. Furthermore, the sensors and motors of the
robots have to be coupled by a control structure that
is the subject of evolution. These aspects will be dis-
cussed in detail in the next sections.

2.1 Robot Design

For the experiment we used a simulation of the Lego
Mindstorms platform [13, 18], in which we designed a
symmetrical and an asymmetrical robot. Both types
of robots are equipped with two light sensors facing
the floor, outputting a continuous value from 0 to
100 which is divided by 100 and used as input in the
control structure. In addition, one pressure sensor is
placed on the robot’s front, which provides the input
layer of the control structure with a binary value, zero
or one. Two motors are used, symmetrically arranged
on the left and right side of the robot which make the
wheels turn according to a continuous input between
-100 and 100.

Figure 1: Schematic overview of the morphology of
the two different robots.

As can be seen in figure 1, the symmetrical and
the asymmetrical robot differ in two ways: the place-
ment of the light sensors, and the activation of the
two motors. For the symmetrical body plan, the light
sensors are placed symmetrically at the front of the
robot. For the asymmetrical body plan, one of the
light sensors is placed on the side of the robot. The
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motors of the symmetrical robot have a direct con-
nection with the two output units of the neural con-
troller. In contrast, in the asymmetrical robot, the
output of one output neuron of the control structure
codes for the rotation and the other one for the veloc-
ity. Equation 1 shows how this signal is transformed
into a suitable signal to activate the two motors.

vleft = (velocity − rotation) · 100
vright = (velocity + rotation) · 100 (1)

Figure 2: Ecological Niche. The floor is shown in
black and white, the walls are grey. The asymmetri-
cal robot is shown.

The velocity and the rotation are values of the
output neurons and have a value in [−0.5, 0.5]. So
the values vleft and vright for the motor input are in
[−100, 100].

2.2 Task & Ecological Niche

A task is devised in which the robots have to move
around a kind of maze (figure 2) as fast as possible
without bumping into walls. A band of black sur-
face is placed on the floor around the walls to help
the robots, whereas the other parts of the floor are
white.

This is a task the robots should be able to perform
with the sensors available to the robot. Furthermore,
the task is likely to cause a sensory-motor interaction
in which all sensors and motors have to participate.
The bumper is needed in order to detect walls and
with the light sensors the robot can avoid bumping
into the walls. In order to obtain a measurement of
the robot’s performance a fitness function is defined
according to equations 2 and 3. In equation 2 n is
the number cycles (1000 in this experiment) and the
penalty for every bump was 50.

If for one cycle both motors turn forward, the fit-
ness of that cycle is positive. If the motors both turn

in a backward direction the fitness of the cycle is neg-
ative. The maximum fitnesscycle is

√
100 · 100 =

100. Therefore, the maximum fitnesstotal is n·100 =
105. This value can only be obtained in a world where
the robot can go forward with maximum speed during
all cycles. In our world the maximum fitness obtained
by a robot was ca. 21000. These formulas show that
the higher the output to both motors, the higher the
fitness will become. The higher the output to both
motors the more distance the individual covers that
cycle. This is in accordance with the task we formu-
lated above; the individuals have to move trough the
environment as fast as possible while avoiding bump-
ing into walls.

2.3 Neural Network

The neural network we use as a control structure
consists of three layers of neurons: an input layer,
a hidden layer of four units, and an output layer.
These three layers are connected by feedforward con-
nections. The neurons within the hidden layer are
fully connected to each other. This neural network
structure was chosen for a number of reasons. First,
with this neural network the individuals should be
able to complete the task. Second, the fully con-
nected hidden layer enables the possibility of integra-
tion of information, but also the development of a
left and right cluster. Finally, the symmetrical form
of the network has some useful properties for analyz-
ing clustering and symmetry.

Activation spreads through the network summing
the product of the inputs and their weights and the
bias for every neuron in the network. The neurons
are activated using the activation function defined
in equation 4. So, they have an activation value in
[−0.5, 0.5].

activationi =
1

1 + e−(inputsi+biasi)
− 0.5 (4)

2.4 Evolutionary process

In order to develop the control structure we used an
evolutionary process which evolves the weights and
biases of the network. The evolutionary process is
based on generations consisting of 20 individuals rep-
resented by 20 genotypes. A genotype contains a
weight for every connection and bias for every neu-
ron, resulting in a vector of 41 values. With each
generation the ten individuals with the highest fitness
are selected. Their genotypes are copied to the next
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fitnesstotal =
n∑

cycle=0

(fitnesscycle)− (penalty · bumps) (2)

fitnesscycle =


√

vleft · vright, if vleft > 0 and vright > 0
−√vleft · vright, if vleft < 0 and vright < 0

0, otherwise
(3)

generation, in which ten new genotypes are formed
from the ten copied genotypes. The new genotypes
are the result of mutations over the genes of the ten
copied genotypes. Every value in the genotype has a
five percent mutation probability and, if selected for
mutation, is mutated according to the equation

genotypenew,i = genotypeold,i + r · 0.3 (5)

where r is a random value from a Gaussian distribu-
tion with mean 0.0 and standard deviation 1.0. This
way, sometimes larger mutations are encountered but
most of the time the weights and biases are slightly
mutated. The factor 0.3 is based on pilot tests.

3 Results

In this section we discuss the results of the experi-
ment. We will first go into the fitness, after which we
will look at clustering and how this was measured.
Finally, the symmetry of the resulting control struc-
tures will be compared.

3.1 Fitness

The control structures of both groups are evolved
for 200 generations after which the fitnesses of both
groups seem to settle. When looking at the behav-
ior of the final generations it is seen that they have
learned to perform their task quite well.

In figure 3 it can be seen that the symmetri-
cal group starts with a higher fitness, however after
about 75 generations the fitness of the asymmetrical
group has risen above the fitness of the symmetrical
group.

Over the first 50 generations the performance of
the symmetrical group (fitnesssym = 5.0·103) is bet-
ter than the performance of the asymmetrical group
(fitnessasym = −0.29 · 103). An analysis of variance
between the two groups over the first 50 generations
shows that there is a significant effect on mean fitness
between the symmetrical and the asymmetrical group
(F (1, 98) = 1.6 · 102, p < .001). In contrast, over the

last 50 generations the performance of the asymmet-
rical group (fitnessasym = 15 · 103) is about twice
as high as the performance of the symmetrical group
(fitnesssym = 7.7 ·103). An analysis of variance over
the last 50 generations shows that this difference is
also significant (F (1, 98) = 2.3 · 102, p < .001).

3.2 Clusters

Additionally, we want to gain insight in the develop-
ment of hemispheres. For current purposes, a hemi-
sphere is seen as a set of neurons which interact more
strongly with each other than with other neurons in
the network. [8] describe a technique which can be
used to measure these kind of clusters. Unfortunately
there is no space to elaborate on this technique here,
and we would like to direct you to [8] or [19] for
further information.

In order to compute the clustering, tracking of
the different states of the network is needed. Two
possible states, which depend on the activity of the
neuron, are defined and measured for each neuron at
each cycle:

1. active state (activation < −0.2 or activation >
0.2)

2. almost inactive state (−0.2 < activation < 0.2)

With this information a cluster index can be com-
puted. A higher the cluster index indicates more
clustering. In our experiment we found values for
CI between 0 and 35.

There is more clustering in symmetrical individ-
uals (CIsym = 6.5) than in asymmetrical individu-
als (CIasym = 3.9). With an analysis of variance it
is shown that this effect of body plan on clustering
is significant (F (1, 98) = 15, p < .001). Moreover,
for the asymmetrical individuals there is a strong
negative correlation between clustering and fitness
(r(200) = −0.619, p < .01). With more clustering,
the fitness decreases (see figure 4). In contrast, no
significant correlation for the symmetrical individu-
als was found.
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Figure 3: Development of mean fitness for the symmetrical and asymmetrical group

(a) Symmetrical group (b) Asymmetrical group

Figure 4: Correlations between clustering and fitness show no significant effect for the symmetrical group
(a). In contrast, there is a strong negative correlation between clustering and fitness in the asymmetrical
group (b).

3.3 Symmetry

We performed an additional analysis to determine
whether the developed control structures are sym-
metrically or asymmetrically organized.

Symmetry inside the nervous system originates
from symmetrical connectivity between the neurons.
So in the case of a symmetrical control structure, a
symmetrical stimulus will result in symmetrical neu-
ral activation patterns. This means that if the left
and the right sensor of the robot encounter an equal
stimulus, the activation patterns in the left and right
part of the control structure should be similar. In
figure 5 the typical behaviour of a symmetrical and
an asymmetrical control structure is illustrated.

(a) Symmetrical control
structure

(b) Asymmetrical control
structure

Figure 5: Symmetrical and asymmetrical processing
inside the control structure with symmetrical and
asymmetrical stimuli. The grey value of the neurons
indicates their activity. The circles and squares rep-
resent different input values.
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Figure 6: Because it is unclear which neurons in the
hidden layer form each other’s counterpart all three
possibilities are measured during the symmetry anal-
ysis. The most symmetrical couples are selected.

Therefore, in order to measure symmetry, we cal-
culate the differences between the activations of dif-
ferent neurons in the network when the input is sym-
metrical (i.e. when both light sensors have a value
higher or lower than the black/white threshold of the
floor). It is unclear which neurons are each others
symmetrical counterpart, so all three possible com-
parisons in the hidden layer are made (see figure 6).
Such a comparison is done by summing, at each cycle,
the differences between the activation of three couples
of neurons (i.e. the output neurons and the neuron
couples in the hidden layer neurons). The most sym-
metrical comparison is selected. So for the case in
which the couples are (a4, a5), (a6, a3), and (a7, a8)
the symmetry is measured as given in equation 6.

This way, for every individual the amount of sym-
metry in the control structure is measured in [0, 1].
Over the final 50 generations there is more sym-
metry in individuals with a symmetrical body plan
(Symsym = .95) than in individuals with an asym-
metrical body plan (Symasym = .90). An analysis of
variance over the final 50 generations shows that this
effect of body structure on symmetry in the control
structure is significant (F (1, 98) = 1.1 ·102, p < .001).
Moreover, for the asymmetrical individuals there is
a strong negative correlation between symmetry in
the control structure and fitness (r(200) = −0.514,
p < .01). With more symmetry, the fitness decreases
(see figure 7). In contrast, there was no significant
correlation for the symmetrical individuals.

3.4 Conclusion

In the first place, the cluster analysis shows that there
is more clustering in individuals with a symmetrical
body plan than in individuals with an asymmetri-
cal body plan. As stated above, the clusters can be
thought of as hemispheres. To conclude, we would say
that these results support evidence for an influence of
body plan on the origin of the two hemispheres.

Furthermore, from the symmetry analysis of the

control structures, it is clear that the individuals with
a symmetrical body plan develop a more symmetrical
nervous system than the individuals with an asym-
metrical body plan.

Finally, it is seen that the robots with a symmetri-
cal body plan evolve faster (see figure 3). In contrast,
the asymmetrical group evolves slower but performs
better in the end. This difference might be the direct
causal result of the structure of the body plan. In
contrast, it could also be the case that the clustering
and symmetry of the control structure are causal in-
termediates in this relation. These possibilities will
be further discussed in the following section.

4 Discussion

4.1 Symmetry with Asymmetry

The results show that asymmetrical individuals,
which have a more asymmetrical control structure,
perfom better than the symmetrical individuals. This
could mean that an asymmetrical body plan has di-
rect advantages for acting in the environment we
used. However, this does not relate to nature very
well since almost all animals possess a symmetrical
body plan [9]. Furthermore, a symmetrical body
plan has been shown to have clear adaptive advan-
tages [2, 10]. Instead, the better performance of the
asymmetrical individuals is better explained by the
presence of an asymmetrically organized nervous sys-
tem. Asymmetry in the control structure positively
correlates with higher fitness. This is in line with
the hypothesis that an asymmetrical nervous system
yields computational benefits.

Although asymmetrically organized functions are
found in the human nervous system, the nervous sys-
tem also contains a lot of symmetrically arranged
functions. We want to propose that cerebral symme-
try has evolved due to its lower degree of complexity.
We will illustrate this by considering a simple Brait-
enberg Vehicle (see figure 8) [3]. Clearly, its control
structure has a typical symmetrical architecture. The
control structure contains only two connections which
direct the robot towards or away from a light source.
If this control structure would be organized asym-
metrically (e.g., like the example in this study, with
one output neuron coding for rotation and one out-
put neuron coding for velocity), the control structure
would need more connections for the integration of in-
formation. This results in increased complexity of the
control structure which makes it a configuration less

6



Sym = 1−Asym = 1− 1
3n

n∑
cycle=0

|a4 − a5|+ |a6 − a3|+ |a7 − a8| (6)

(a) Symmetrical group (b) Asymmetrical group

Figure 7: Correlations between symmetry in the resulting control structure and fitness show no significant
effect for the symmetrical group (a). In contrast, there is a strong negative correlation between symmetry
and fitness in the asymmetrical group (b).

likely to appear during the process of evolution. This
fits the findings from our experiment in which the
asymmetrical control structure evolves slower, and
might also be the adaptive advantage leading to the
current symmetrical structures in the human nervous
system.

Figure 8: Braitenberg vehicle; sensors and motors are
directly coupled with only one connection each.

A remaining issue is the relation between the
development of a symmetrical organization of the
nervous system and the evolution of the two hemi-
spheres. In our experiment the symmetrical individ-
uals developed a more clustered control structure.
This leads us to believe that symmetry facilitates
clustering. We believe that the same relation holds

for natural systems. Therefore, it is likely that the
bihemispherical configuration emerged from a sym-
metrical nervous system. Subsequently, asymmetry
evolved with the need for more complex cognitive
processing. Asymmetry provides the required neural
space.

4.2 Embodied Embedded Brains

This study shows that embodied cognitive modelling
can contribute to research on cerebral lateralization.
Regarding this contribution, it is important to con-
sider the validity of the model in relation to a natural
system.

The simulated model used in this study is by no
means a valid equivalent of a natural system. One
should therefore be very careful in generalizing the
results from the simulation to the human nervous sys-
tem. On the other hand, this research can be valuable
in the sense that it can provide supporting evidence
for conclusions drawn from studies dealing with nat-
ural systems. Furthermore, it can lead to new ideas
and insights, and may result in original hypotheses.
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